【教程】将ChatTTS添加到FastGPT中
本文最后更新于 61 天前,其中的信息可能已经有所发展或是发生改变。

最近浏览bilibili看到这个开源的TTS,刚好可以用来弥补FastGPT没有免费TTS的问题
教程N卡环境:Tesla P100-16G;Python环境:conda/python3.10.14

下载源码

# 克隆ChatTTS本体
git clone --depth 1 https://github.com/2noise/ChatTTS.git
# 下载所需的pip包
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# 卸载CPU的torch
pip uninstall torch torchvision torchaudio -y
# 下载CUDA的torch
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# 下载缺少的gradio、Cython包
pip install gradio Cython -i https://pypi.tuna.tsinghua.edu.cn/simple
# 还有WeTextProcessing
conda install -c conda-forge pynini=2.1.5 && pip install WeTextProcessing -i https://pypi.tuna.tsinghua.edu.cn/simple
# 克隆ChatTTS模型 需要下载git lfs,自行搜索,我这边将其放在ChatTTS\model\下
cd .\ChatTTS\model\
git clone https://www.modelscope.cn/pzc163/chatTTS.git

运行webui

# 因为模型放在.\ChatTTS\model\chatTTS\下,因此:
python .\webui.py --local_path .\ChatTTS\model\chatTTS\

默认会打开http://localhost:8080
由于在运行时出现该情况:

RuntimeError: Found Tesla P100-PCIE-16GB which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability 6.0
RuntimeError:发现Tesla P100-PCIE-16GB太旧,无法由用作后端的triton GPU编译器支持。Triton仅支持CUDA功能>=7.0的设备,但您的设备的CUDA功能为6.0

是因为显卡太旧了,不支持最新版的编译器,需要添加两行代码在头部后再次运行:

import torch._dynamo
torch._dynamo.config.suppress_errors = True

新建openai接口

根据openai的tts接口文档API Reference – OpenAI API可以看到:

因此我们可以用python的flask框架创建一个简单的类似的接口,并根据webui.py的例子,加入ChatTTS模型功能,这边用的是webui中设定的默认语音种子2/42:

from flask import Flask, request, send_file
import torch
import numpy as np
import ChatTTS
import argparse
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import io
from pydub import AudioSegment

app = Flask(__name__)

# 设置 Flask 应用的 IP 地址和端口
server_ip = '0.0.0.0'  # 允许外部访问
server_port='8081'  # 可以自定义端口

# 初始化ChatTTS模型的方法
def load_model():
    parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
    parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
    parser.add_argument('--server_port', type=int, default=8081, help='Server port')
    parser.add_argument('--local_path', type=str, default=None, help='the local_path if need')
    args = parser.parse_args()
    global server_ip
    server_ip=args.server_name
    global server_port
    server_port=args.server_port

    print("loading ChatTTS model...")
    global chat
    chat = ChatTTS.Chat()
    if args.local_path == None:
        chat.load_models()
    else:
        print('local model path:', args.local_path)
        chat.load_models('local', local_path=args.local_path) # --local_path .\ChatTTS\model\chatTTS\  

load_model()

@app.route('/v1/audio/speech', methods=['POST'])
def generate_speech():
    data = request.get_json()
    # model = data.get('model', 'tts-1')
    input_text = data.get('input', '')
    # voice = data.get('voice', 'alloy')

    audio_seed_input=2
    text_seed_input=42

    torch.manual_seed(audio_seed_input)
    rand_spk = chat.sample_random_speaker()
    params_infer_code = {
        'spk_emb': rand_spk, 
        'temperature': 0.3,
        'top_P': 0.7,
        'top_K': 20,
        }
    params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
    
    torch.manual_seed(text_seed_input)
    input_text = chat.infer(input_text, 
                            skip_refine_text=False,
                            refine_text_only=True,
                            params_refine_text=params_refine_text,
                            params_infer_code=params_infer_code
                            )
    
    # 使用ChatTTS模型生成音频
    wav = chat.infer(input_text, 
                    skip_refine_text=True, 
                    params_refine_text=params_refine_text,
                    params_infer_code=params_infer_code
                    )
    
    audio_data = np.array(wav[0]).flatten()
    # 指定采样率
    sample_rate = 24000
    # 将音频数据转换为符合pydub要求的格式
    audio_segment = AudioSegment(
        data=(audio_data * 32767).astype(np.int16).tobytes(),
        sample_width=2,  # 16位
        frame_rate=sample_rate,
        channels=1  # 单声道
    )
    # 创建一个字节流,用于保存MP3文件
    audio_io = io.BytesIO()
    # 将AudioSegment对象转换为MP3格式,并写入字节流
    audio_segment.export(audio_io, format="mp3")
    # 查询音频数据
    audio_io.seek(0)
    # 创建响应对象,指定MIME类型和音频流
    return send_file(audio_io, mimetype="audio/mp3")

if __name__ == '__main__':
    app.run(debug=True, port=server_port)

启动api:

python .\open_api.py --local_path .\ChatTTS\model\chatTTS\

测试正常,能够输出input中的文字语音:

添加至FastGPT

编辑config.json

one-api中按下图填入模型

重启FastGPT和OneAPI容器,就可以体验啦

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
Source: https://github.com/MengXi2021/Argon-Emoji-DailyNotes
Source: https://github.com/Ghost-chu/argon-huhu-emotions
Source: github.com/zhheo/Sticker-Heo
颜文字
Emoji
小恐龙
花!
每日手帐
呼呼
Heo
上一篇
下一篇